
Correlation

Guillaume Frèche
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We introduce another product on F(R,K), the scalar product, from which we define the correlation and relate to convolution.

Definition 0.1 (Scalar product, Hermitian product)

If V denotes a vector space over R, a scalar product over V is any mapping 〈., .〉 : V × V → R satisfying the following

properties:

I it is bilinear: for any (x , y , z) ∈ V 3 and any (α,β) ∈ R2, 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉; same for the second

component;

I it is positive: for any x ∈ V , 〈x , x〉 ≥ 0;

I it is definite: for any x ∈ V , 〈x , x〉 = 0⇔ x = 0V .

If V denotes a vector space over C, a Hermitian product over V is any mapping 〈., .〉 : V × V → C satisfying the

following properties:

I it is linear for the first component: for any (x , y , z) ∈ V 3 and any (α,β) ∈ C2, 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉;

I it is anti-linear for the second component: for any (x , y , z) ∈ V 3 and any (α,β) ∈ C2, 〈x ,αy + βz〉 =

α〈x , y〉+ β〈x , z〉, where z denotes the conjugate of z ∈ C;

I it is positive and definite.

In this lecture, we restrict our study to the subspace L2(R,K) of F(R,K) of square-integrable signals.

Definition 0.2 (Scalar product over L2(R,R), Hermitian product over L2(R,C), energy)

We define a scalar product over L2(R,R) by

∀(x , y) ∈ L2(R,R)2 〈x , y〉 =
∫ +∞

−∞
x(t)y(t)dt

We define a Hermitian product over L2(R,C) by

∀(x , y) ∈ L2(R,C)2 〈x , y〉 =
∫ +∞

−∞
x(t)y(t)dt

From these products, we can define the norm of a signal, from which we introduce the energy:

∀x ∈ L2(R,K) E (x) = ‖x‖2 = 〈x , x〉

i.e.

∀x ∈ L2(R,R) E (x) =

∫ +∞

−∞
x(t)2dt ∀x ∈ L2(R,C) E (x) =

∫ +∞

−∞
|x(t)|2dt
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Remarks:

I In other words, L2(R,K) is the subspace of F(R,K) of finite-energy signals.

I Cauchy-Schwarz inequality indicates that for two signals x and y of L2(R,K), |〈x , y〉〉| ≤ ‖x‖.‖y‖ =
√

E (x)E (y),

ensuring that both products are well defined over L2(R,K).

I Notation 〈., .〉 for the scalar product is consistent with the duality bracket, since for any fixed signal y , mapping

x 7→ 〈x , y〉 is a linear form.

I To deal indistinctly with both products, we use notation x∗ to designate x∗ = x for x ∈ R, and x∗ = x for x ∈ C.

I For infinite-energy signals, we can introduce the notion of average power.

Definition 0.3 (Average power)

The average power of a signal x ∈ F(R,K) is the real number:

P(x) = lim
t→+∞

1

2t

∫ t

−t
|x(u)|2du

Remark: Finite-energy signals have a zero average power.

Definition 0.4 (Cross-correlation, autocorrelation)

Let x and y be two signals of L2(R,K). The cross-correlation is the function γxy : R→ K defined by

∀t ∈ R γxy (t) = 〈x , τt(y)〉 =
∫ +∞

−∞
x(u)y∗(u − t)du

The autocorrélation of a signal x ∈ L2(R,K) is the cross-correlation with itself, i.e.

∀t ∈ R γx(t) = γxx(t) = 〈x , τt(x)〉 =
∫ +∞

−∞
x(u)x∗(u − t)du

Remarks:

I As a scalar product, cross-correlation measures the similarity between a signal x and a shifted version of a signal y .

It enables the identification of common ”patterns” between two signals. Autocorrelation enables the identification of

similarities between a signal x and a shifted version of itself, which can be used to determine the periodicity of the

signal for instance.

I For any signal x ∈ F(R,K), γx(0) = 〈x , x〉 = E (x), thus the energy of a signal is equal to its autocorrelation in 0.

I The convolution can be seen as a variant of cross-correlation. Indeed, let x and y be two signals of F(R,K). For any

t ∈ R,

(x ∗ y)(t) =
∫ +∞

−∞
x(u)y(t − u)du =

∫ +∞

−∞
x(u)ỹ(u − t)du = 〈x , τt(ỹ)∗〉 = γxỹ∗(t)

with ỹ : t 7→ y(−t). Conversely, we can write cross-correlation as a function of convolution: γxy = x ∗ ỹ∗.
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I By connecting convolution to this scalar product, we can bring another proof that any LTI system is a convolution

system. Indeed, let L be an LTI system of impulse response h = L(δ), x ∈ F(R,K) an input and y = L(x) the

corresponding output. For any t ∈ R,

y(t) = L(x)(t) = L(x ∗ δ)(t) = L
(
〈x , τt(δ̃)〉

)
= 〈x , L(τt(δ̃))〉 = 〈x , τt(L̃(δ))〉 = 〈x , τt(h̃)〉 = (x ∗ h)(t)

where we use the bilinearity of L and its commutativity with operators τt and x 7→ x̃ .

Proposition 0.1

We have the following properties:

(i) For any two signals x and y , cross-correlation satisfies the equality

∀t ∈ R |γxy (t)| ≤
√
E (x)E (y)

In particular, for any signal x , the absolute value of autocorrelation γx reaches its maximum E (x) in 0.

(ii) Autocorrelation satisfies the following symmetry property: for any signal x , for any t ∈ R, γx(−t) = γ∗x (t).

PROOF : (i) First note that any shifted signal τt(x) has the same energy as signal x . Indeed, by the change of variable

u 7→ u + t, we get

∀t ∈ R E (τt(x)) =

∫ +∞

−∞
|τt(x)(u)|2du =

∫ +∞

−∞
|x(u − t)|2du =

∫ +∞

−∞
|x(u)|2du = E (x)

Then by applying Cauchy-Schwarz inequality,

∀t ∈ R |γxy (t)| = |〈x , τt(y)〉| ≤ ‖x‖.‖τt(y)‖ =
√
E (x)E (τt(y)) =

√
E (x)E (y)

In the particular case of y = x ,

∀t ∈ R |γx(t)| ≤ E (x) = γx(0)

(ii) Let a signal x and t ∈ R. By the change of variable u 7→ u − t, we get:

γx(−t) =
∫ ∞
−∞

x(u)x∗(u + t)du =

∫ ∞
−∞

x(u − t)x∗(u)du =

(∫ ∞
−∞

x(u)x∗(u − t)du

)∗
= γ∗x (t)

Remark: It is consistent that the maximum of autocorrelation is in 0, since a signal has a maximum of similarity with a

version of itself shifted by 0.
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